

INTELLIGENT SYSTEMS (CSE-303-F)

Section A

Alpha Beta Pruning

Motivations

• Breadth-first, depth-first, hill-climbing, best-first, and A*
assume a non-hostile search space.

• The goals just sit there somewhere in the graph.

• The goals do not try to elude you.

• The 8-puzzle game did not try to stop you from
reaching the goal.

• Your tic-tac-toe opponents reacted to your moves
randomly.

• But in a real 2-person game, you opponent does try to
beat you and make it difficult for you to reach your goal.

• Minimax search can be applied in an adversarial search
space.

• Alpha-beta pruning can be used to cut bad branches
(moves) in the game tree to improve minimax search
time.

Objectives

1. Adversarial search space: MAX vs. MIN

2. A simple game tree: Nim-7

3. Minimax on Nim-7

4. Minimax on tic-tac-toe looking 3 plies ahead

5. Alpha-beta pruning

Two people games

• Solved games

– Tic-tac-toe

– Four In A Line

– Checkers

• Impressive games played by robots

– Othello bot is much stronger than any human player

– Computer chess beat the human world champions

– TD-Gammon ranked among top 3 players in the
backgammon world

• Future bot challenges to humans

– Poker bots play respectfully at world-class level

– Computer bridge programs play competitively at national
level

– Go bots are getting more serious in the amateur ranking

Complete game tree for Nim-7

• 7 coins are placed on
a table between the
two opponents

• A move consists of
dividing a pile of
coins into two
nonempty piles of
different sizes

• For example, 6 coins
can be divided into
piles of 5 and 1 or 4
and 2, but not 3 and 3

• The first player who
can no longer make a
move loses the game

P1 starts

P2 replies

P1

P2

P1

P2 loses

P1 loses

P2 loses

Node score = 0

means MIN wins.

1 means MAX wins.

Bold edges indicate

forced win for MAX,

Player2.

moves first to minimize

to maximize

MAX wins

MIN wins

MIN vs. MAX in a Nim game

MIN wins

The best that MIN (Player1)
can do is to lose unless Player2
makes a mistake.

Minimax to fixed ply depth

• Instead of Nim-7, image the chess game tree.

• Chess game tree is too deep.
– cannot expand the current node to terminating

(leaf) nodes for checkmate.

• Use fixed ply depth look-ahead.
– Search from current position to all possible

positions that are, e.g., 3-plies ahead.

• Use heuristic to evaluate all these future
positions.
– P=1, N=B=3, R=5, Q=9

– Assign certain weight to certain features of the
position (dominance of the center, mobility of
the queen, etc.)

– summarize these factors into a single number.

• Then propagating the scores back to the
current node.

Use heuristic h(n) for each of these future positions.

Back propagate
the scores up
the tree.

= current node score

MAX calculates the current node score

hopes for the best

also hopes for the best

Look 3 plies ahead.

A stronger heuristic will beat a weaker heuristic.
A farther look-ahead will beat a near-sighted look-ahead.
Computer chess routinely uses complex heuristics analyzing
material and positional advantages and looks 40 plies ahead.

Heuristic measuring for adversarial tic-tac-toe

Maximize E(n)

E(n) = 0 when my opponent and I have equal number of possibilities.

Tic-tac-toe, MAX vs MIN, 2-ply look-ahead

MIN tries his
best to
minimize.

MIN tries his
best to
minimize.

MIN tries his
best to
minimize.

MAX hopes
to win by
maximizing.

Fig. 4.23

MAX's score at the opening is 1. So according to

this heuristic, Play 1 has advantage.

MAX makes his first move

MAX hopes
to win by
maximizing.

But MIN then builds
another minimax
tree with 2 plies
look-ahead from
here and decided to
reply with

MAX though
MIN's best
reply was

MAX's 2nd move: look ahead analysis

Fig. 4.24

MAX's 3rd move: look ahead analysis

−∞ means MIN wins.
+∞ means MAX wins.

Fig. 4.25

Alpha-beta pruning example

Unevaluated nodes

Minimax without pruning

Depth-first search

Visit C, A, F,

Visit G, heuristics evaluates to 2
Visit H, heuristics evaluates to 3

Back up {2,3} to F. max(F)=3

Back up to A. β(A)=3. Temporary min(A) is 3.

3 is the ceiling for node A's score.

Visit B according to depth-first order.

Visit I. Evaluates to 5.

Max(B)>=5. α(B)=5.

It does not matter what the value of J is, min(A)=3. β-prune J.

Alpha-beta pruning improves search efficiency of minimax without sacrificing accuracy.

F

G H I
J

Alpha-beta pruning

• Proceed in a depth-first fashion in the n-ply look-ahead search tree.

• Find the score for the top of this tree.

• During the search, creates two values alpha and beta

• α-value associated with MAX can never decrease
– MAX's eventually score is at least as good as the current α-value

• β-value associated with of MIN can never increase
– MIN's eventually score is at least as good as the current β-value

• α-prune: -value <= -value of a MAX ancestor

• β -prune: Any MAX node having -value <= -value of any MIN ancestor

min(A) = -1

max(S) must >= -1

Lower bound: -value of S = -1

h(C) = -2

min (B) <= -2

Upper bound: -value = -2

Final value of B can never exceed

current value of S. We can prune

the other children of B.

-1
A

B

S

1 0 -1 1 -2

MA

X

C

-value = -2

min(B)≤-2

-value of S = -1
 max(S)≥-1

MIN

α-prune

Conclusion

• Minimax search is designed for the adversarial
search space, MAX vs MIN.

• Before MAX makes a move, he looks n plies ahead
in a DFS manner.

• Apply heuristic function for the states at the end of
the look ahead level.

• Propagate these values back up to the current
state.

– Use alpha-beta pruning to cut bad branches (moves)
in the game tree to improve search time.

• Choose the move that maximizes the current node
score.

• Then it is MIN's turn of doing similar look-ahead and
pruning to decide his move.

• The players alternate until game over.

